Программирование [karpov.courses] Machine Learning для начинающих (2023)

[karpov.courses] Machine Learning для начинающих (2023)

naR5DCd.png


ML-инженер - это специалист, который находится на стыке анализа данных и разработки. Он должен уметь писать код, строить математические модели и понимать потребности бизнеса.

Мы составили программу курса таким образом, чтобы любой желающий без сильной математической подготовки смог разобраться со всеми этапами работы: от сбора данных и применения классических алгоритмов до обучения нейросетей и проведения A/B-тестов.

Искать работу в новой профессии непросто, поэтому мы решили поделиться своим опытом и уделили отдельное внимание подготовке к собеседованиям и разбору популярных задач.

Одним словом, у вас в руках перед вами - исчерпывающий starter pack для начала карьеры в ML и Data Science.

ПРОГРАММА КУРСА
1. ПРИКЛАДНАЯ РАЗРАБОТКА НА PYTHON
Начнём с основ программирования, научимся писать код на Python и освоим библиотеки для анализа данных и машинного обучения. Научимся работать с базами данных и разберёмся, как с помощью SQL-запросов получать данные для моделей. Поговорим об архитектуре приложений и узнаем, как контролировать версии с помощью Git. Напишем прототип будущего ML-сервиса и настроим всё необходимое для его работы.
2. МАШИННОЕ ОБУЧЕНИЕ
Познакомимся с классическими алгоритмами машинного обучения. Рассмотрим всё от простых линейных моделей до градиентного бустинга на решающих деревьях. Научимся готовить данные для моделей, настраивать разные параметры и оценивать качество работы ML-алгоритмов. Обсудим тонкости разработки рекомендательных систем, обучим модель на данных социальной сети и свяжем её с нашим приложением.
3. ОСНОВЫ DEEP LEARNING
Глубинное обучение и нейронные сети позволяют решать задачи, в которых классические модели бессильны: распознавание лиц, детекция объектов на изображениях, генерация осмысленного текста. Разберём популярные архитектуры нейросетей, научимся применять предобученные модели и тренировать свои. Построим продвинутую модель и усовершенствуем наш алгоритм рекомендаций.
4. СТАТИСТИКА И A/B-ТЕСТЫ
Рассмотрим основные понятия теории вероятностей и математической статистики. Научимся проводить A/B-тесты и достоверно оценивать влияние ML-моделей на продукт и бизнес. Обсудим подводные камни проведения экспериментов и способы оценки метрик в ситуациях, когда A/B-тест провести невозможно. Реализуем свою систему тестирования и узнаем, удалось ли нам повысить качество рекомендаций в сравнении с базовым решением.
5. ПОДГОТОВКА К СОБЕСЕДОВАНИЯМ
Поделимся своим опытом и расскажем, как проходят собеседования на Junior ML-инженера: разберём алгоритмические задачи на Python, а также популярные вопросы по машинному обучению, статистике и А/В-тестам. Практические задания помогут набраться уверенности в своих знаниях, заранее набить руку и уверенно пройти этот непростой этап.

Подробнее:
Скачать:
 
T

twenty-12

Премиум PRO ★
Регистрация
25.09.23
Сообщения
5
Реакции
0
Здравствуйте! Это полный курс?
 
MilkShake

MilkShake

Администратор
Регистрация
01.07.21
Сообщения
12.816
Реакции
91.366

Похожие темы

Trinity
Ответы
0
Просмотры
239
Trinity
Trinity
Ответы
0
Просмотры
312
Trinity
М
Ответы
0
Просмотры
16
Скоро на Moresliv
Море Слив
М